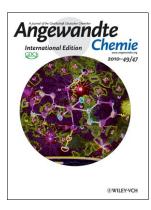


Photoactivation can be used ...


... to activate anticancer drugs selectively just at the site of a tumor. Such targeted treatments promise fewer side effects and may address the problem of acquired resistance associated with drugs such as cisplatin. P. J. Sadler and co-workers show in their Communication on page 8905 ff. that the octahedral complex trans,trans,trans[Pt^{IV}(N₃)₂(OH)₂(py)₂] is potentially cytotoxic towards a number of cell lines when activated by blue light, with no toxicity in the absence of irradiation.

Inside Cover

Nicola J. Farrer, Julie A. Woods, Luca Salassa, Yao Zhao, Kim S. Robinson, Guy Clarkson, Fiona S. Mackay, and Peter J. Sadler*

Photoactivation can be used to activate anticancer drugs selectively just at the site of a tumor. Such targeted treatments promise fewer side effects and may address the problem of acquired resistance associated with drugs such as cisplatin. P. J. Sadler and co-workers show in their Communication on page 8905 ff. that the octahedral complex $trans, trans, trans-[Pt^{IV}(N_3)_2(OH)_2(py)_2]$ is potentially cytotoxic towards a number of cell lines when activated by blue light, with no toxicity in the absence of irradiation.

